Search results for "cdc25 Phosphatases"

showing 5 items of 5 documents

In silico identification of small molecules as new cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern

2021

The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us…

0301 basic medicineHepG2Protein familyCdc25In silicoAntiproliferative activityCell cycleLigandsCatalysisArticleInorganic Chemistrylcsh:Chemistry03 medical and health sciencesCdc250302 clinical medicineCDC2 Protein KinaseDrug DiscoveryHumanscdc25 PhosphatasesComputer SimulationMolecular Targeted TherapyPhysical and Theoretical ChemistryPhosphorylationMolecular Biologylcsh:QH301-705.5DRUDITSpectroscopyBinding SitesbiologyCell growthChemistryOrganic ChemistryGeneral MedicineHep G2 CellsCell cycleAntiproliferative activity; Cdc25; Cell cycle; DRUDIT; HepG2; Molecular dockingLigand (biochemistry)Small moleculeComputer Science Applications030104 developmental biologyBiochemistrylcsh:Biology (General)lcsh:QD1-999Docking (molecular)030220 oncology & carcinogenesisMolecular dockingbiology.proteinDrug Screening Assays Antitumor
researchProduct

Study of the cytolethal distending toxin (CDT)-activated cell cycle checkpoint. Involvement of the CHK2 kinase.

2001

AbstractThe bacterial cytolethal distending toxin (CDT) triggers a G2/M cell cycle arrest in eukaryotic cells by inhibiting the CDC25C phosphatase-dependent CDK1 dephosphorylation and activation. We report that upon CDT treatment CDC25C is fully sequestered in the cytoplasmic compartment, an effect that is reminiscent of DNA damage-dependent checkpoint activation. We show that the checkpoint kinase CHK2, an upstream regulator of CDC25C, is phosphorylated and activated after CDT treatment. In contrast to what is observed with other DNA damaging agents, we demonstrate that the activation of CHK2 can only take place during S-phase. Use of wortmannin and caffeine suggests that this effect is no…

Intracellular FluidCell cycle checkpointCytolethal distending toxinCell Cycle ProteinsAtaxia Telangiectasia Mutated ProteinsBiochemistryS PhaseWortmanninchemistry.chemical_compoundStructural BiologyPhosphorylation0303 health sciences030302 biochemistry & molecular biologyCell CycleCell cycleProtein-Tyrosine Kinases3. Good healthCell biologyDNA-Binding Proteinsbiological phenomena cell phenomena and immunityWortmanninG2 PhaseCytolethal distending toxinBacterial ToxinsProto-Oncogene Proteins pp60(c-src)Biophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyProtein Serine-Threonine KinasesCell Line03 medical and health sciencesCaffeineGeneticsHumanscdc25 PhosphatasesCHEK1Molecular Biology[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biologyCheckpoint 2 kinaseCyclin-dependent kinase 1Cell growthTumor Suppressor ProteinsCell BiologyG2-M DNA damage checkpointCDC25CAndrostadienesGenes cdcchemistryCancer researchHeLa CellsFEBS letters
researchProduct

The bacterial cytolethal distending toxin (CDT) triggers a G2 cell cycle checkpoint in mammalian cells without preliminary induction of DNA strand br…

1999

The bacterial cytolethal distending toxin (CDT) was previously shown to arrest the tumor-derived HeLa cell line in the G2-phase of the cell cycle through inactivation of CDK1, a cyclin-dependent kinase whose state of activation determines entry into mitosis. We have analysed the effects induced in HeLa cells by CDT, in comparison to those induced by etoposide, a prototype anti-tumoral agent that triggers a G2 cell cycle checkpoint by inducing DNA damage. Both CDT and etoposide inhibit cell proliferation and induces the formation of enlarged mononucleated cells blocked in G2. In both cases, CDK1 from arrested cells could be re-activated both in vitro by dephosphorylation by recombinant Cdc25…

DNA ReplicationG2 PhaseCancer ResearchCAFFEINECell cycle checkpointCytolethal distending toxinDNA damageRecombinant Fusion Proteins[SDV]Life Sciences [q-bio]Bacterial ToxinsBiologyS Phase03 medical and health sciencesCDC2 Protein KinaseGeneticsHumanscdc25 PhosphatasesCHEK1PhosphorylationMolecular BiologyMitosisEtoposide030304 developmental biology0303 health sciences030306 microbiologyCell growthDNA NeoplasmG2-M DNA damage checkpointCell cycleAntineoplastic Agents PhytogenicNeoplasm Proteins3. Good healthCell biology[SDV] Life Sciences [q-bio]BiochemistryAGENT ANTITUMEURProtein Processing Post-TranslationalCell DivisionDNA DamageHeLa Cells
researchProduct

Topotecan-triggered degradation of topoisomerase I is p53-dependent and impacts cell survival.

2005

Abstract The anticancer drug topotecan belongs to the group of topoisomerase I (topo I) inhibitors. In the presence of topotecan, topo I cleaves the DNA but is unable to religate the single-strand break. This leads to stabilization of topo I-DNA–bound complexes and the accumulation of DNA strand breaks that may interfere with DNA replication. The molecular mechanism of controlling the repair of topo I-DNA covalent complexes and its impact on sensitivity of cells to topotecan is largely unknown. Here, we used mouse embryonic fibroblasts expressing wild-type p53 and deficient in p53, in order to elucidate the role of p53 in topotecan-induced cell death. We show that p53-deficient mouse embryo…

Cancer ResearchProgrammed cell deathendocrine system diseasesDNA damageLeupeptinsAntineoplastic AgentsApoptosisBiologyTopoisomerase-I Inhibitorchemistry.chemical_compoundMiceMG132medicineAnimalsHumanscdc25 PhosphatasesCHEK1Enzyme InhibitorsTopoisomeraseCell CycleDNA NeoplasmFibroblastsMolecular biologyEnzyme ActivationOncologychemistryDNA Topoisomerases Type IApoptosisCheckpoint Kinase 1MutationCancer researchbiology.proteinTopotecanTopoisomerase I InhibitorsTumor Suppressor Protein p53TopotecanProtein Kinasesmedicine.drugDNA DamageCancer research
researchProduct

Use of CDC2 from etoposide-treated cells as substrate to assay CDC25 phosphatase activity

1999

International audience; Cyclin-dependent kinases (CDKs) regulate the key transition of the cell cycle in all organisms. In response to Etoposide (VP-16) induced DNA damage, cells undergo a G2-phase arrest resulting in the accumulation of inactive CDK1 (CDC2) kinase complexes. Here we report that upon Etoposide treatment CDC2 is phosphorylated on tyrosine 15 and is dephosphorylated and activated in vitro by recombinant CDC25 phosphatase. We also show that inactive CDC2 kinase from Etoposide-treated cells can be used as a substrate in a sensitive two-step assay of CDC25 phosphatase. This assay, which is very simple to set-up, is based on the monitoring of CDC2 kinase activity after CDC25-depe…

MESH: HumansMESH: Phosphorylation[SDV]Life Sciences [q-bio]Cell Cycle Proteins[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]MESH: CDC2 Protein KinaseMESH: Tyrosine[SDV] Life Sciences [q-bio]AGENT ANTITUMORALenzymes and coenzymes (carbohydrates)MESH: Cell Cycle ProteinsMESH: cdc25 PhosphatasesCDC2 Protein KinaseMESH: HeLa CellsMESH: Phosphoprotein PhosphatasesPhosphoprotein PhosphatasesHumansTyrosinecdc25 PhosphatasesPhosphorylationbiological phenomena cell phenomena and immunityEtoposideHeLa CellsMESH: Etoposide
researchProduct